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An approximate method of allowing for the influence of the length of
the transition region in the calculation of the characteristics of plane
and axisymmetric boundary layers with a small pressure drop at the
external boundary is proposed. A satisfactory agreement between the
analytical results and experimental data is cbtained.

In the proximity of the surface of a body moving in
a liquid or a gas at large Reynolds numbers, there
forms a boundary layer where laminar-turbulent tran~
sition occurs in a certain transition region. L. Prandtl
1] has schematized this region as a point. and has
proposed an approximate formula for determining the
friction drag of a plate with allowance for the laminar
and turbulent regions, A, R. Collar [2] has improved
Prandtl's formula for a flat plate, within the limits of
the concept of a transitionpoint, while K. K. Fedyaev-
skii and V. T. Goroshchenko [3] have plotted
curves for determining the profile drag of a wing.
L. M. Zysina-Molozhen [4~6] was apparently the first
to draw attention to the importance of taking into
account the length of the transition region in the cal-
culation of boundary layer characteristics and to
propose an empirical computation method.

Let us examine the longitudinal flow past an axi-
symmetric body or a plane wing profile. The origin
of the coordinates will be located at the forward stag-
nation point, the x axis will be directed along the con~
tour, and the y axis will be normal to the contour.
Applying the law for the change in momentum to an
element of a boundary layer with a longitudinal pres-
sure drop at the external boundary, we obtain the
integral momentum relation [4, 7]
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Relation (1), and all the following computations,
are valid only for small values of 6/r;,. Without this
limitation, the problem becomes appreciably more
complicated, and a solution to it cannot be obtained
in final form. In cases of practical importance, how-
ever, the transition region is usually located at the
nose portion or at the maximum cross section of a
body, where this limitation has only a slight effect.

It should be noted that (1) holds for the laminar
and turbulent regions as well as for the transition
region of an axisymmetric boundary layer. The
term 2 (dry/dx) (1/7y) takes into account the infiuence
of the transverse curvature of the body on the boun-
dary layer characteristics. Postulating ry = 1 in this
relation and in all the following computations, we
shall formally obtain formulas suitable for calculat-
ing the characteristics of a plane boundary layer.

Let us examine the transition region in a boundary
layer, assuming that the dependence of the local fric-
tion coefficient in this region on the Reynolds number
in the absence of a longitudinal pressure drop at the
external boundary of the layer is governed by the
power law
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The values of the constants A and B will be de-
termined from the condition that the value of the coef-
ficient 7 at the beginning of the transition region is

equal to its value at the end of the laminar region,
while its value at the end of the transition region is
equal fo that at the beginning of the turbulent region;
i, e,
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The local friction coefficient in the laminar and
turbulent regions of the boundary layer will be calcu~
lated on the basis of the Blasius [10] and Falkner [11}

formulas, respectively:

0664 0,0263
Gy = R = it @



INZHENERNO-FIZICHESKII ZHURNAL

-lg#
y P
/
N /// -
wl—/ A i//
Vo
v

/07

5
6 /
2
25 // ; :,_
— ’
0 a5 015 20 R-10°

Z

Fig. 1. Coefficients A and B plotted vs,

the critical Reynolds number at the be-

ginning of the transition region. 1) k =
=1,5; 2) k=1,75; 3) k=2,0,
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Fig. 2. The coefficient k = Ry;/Rx; as a function of the

critical Reynolds number at the beginning of the transi-

tion region: 1) according to the data of [12]; 2) according
to [13]; 3) according to [6]; a corresponds to [14]}.
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Then, after simple computations we obtain
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where k = th/Rxl‘

Figure 1 shows the coefficients A and B as a func-
tion of the critical Reynolds number at the beginning
of the transition region Rx; .

It should be noted that, using a somewhat different
approach, Zysina-Molozhen [6] has derived an ana-
logous coefficient r = Xt/xl’ which in the case of a
plate is identical to the coefficient k = Rx¢/Rx ;- A
method of calculating Ry ; with allowance for the initial
turbulence of the flow and surface roughness of the
body is outlined in [9].

Processing of the experimental data obtained by
Potter and Whitfield [12], Schubauer and Skramstad
[13], and Schubauer and Klebanoff [14] concerning
the length of the transition region in the boundary
layer on a plate made it possible to obtain a plot of
the coefficient k vs. the critical Reynolds number Rx s
shown in Fig, 2, Curve (1) is plotted on the basis of
the data obtained by Potter-Whitfield [12], who have
generalized the experimental results. Curve (2) is a
result of the processing of Schubauer and Skramstad's
[13] experimental data. Curve (3) is obtained by con-
version of a similar graph published by Zysina-Molo-
zhen in [6]. Point a in the graph corresponds to the
experimental results obtained by Schubauer and
Klebanoff [14]. The value of the coefficient k com-
puted from Dhawan and Narasimha's [15] formula
appears to exceed the experimental data by 15-20%.

The specific nature of the relation shown in Fig. 3
should be emphasized, since in the general case,
coefficient k is not a single~valued function of the
local eritical Reynolds number RXZ’ which depends
not only on the degree of turbulence of the oncoming
flow but also on the longitudinal pressure drop at the
external boundary of the layer. Analysis of the experi-
mental data [16, 17] for a boundary layer with a small
pressure drop at the external boundary shows, how-
ever, that in this case the values of the coefficient k
correlate satisfactorily with those shown in Fig, 2
for a plate.

In order to determine the relationship between the
local friction coefficient CftI: and the Reynolds number
R** in the transition region, we shall use the integral
relation (1}, which for the particular case of a plate
is written in the form
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After separating the variables, we shall integrate the
relation (7) for the boundary condition R** =0 for
Ry = 0. As a result, we get
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With-allowance for the relations (7) and (8), we shall
calculate the normalizing function
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After taking the logarithm of the normalizing function
and subsequently differentiating it, we get
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Processing of experimental data for the transition
region [14, 18] showed that for small pressure drops
at the external boundary of the layer—for which all
the following results are valid—one may postulate
£ = 1land H= 2 in relation (1), For a boundary layer
with a large longitudinal pressure gradient at the
external boundary, the value of the parameter H va-
ries within the range from 2.0 to 3.6, as has been
correctly pointed out by Zysina~-Molozhen [4]. It is,
therefore, advisable to use the mean value H =3 in
such cases.

For the case of a boundary layer with a small
pressure drop at the external boundary, the function
F(f) becomes linear and reduces to the form
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while relation (1) becomes a Bernoulli differential
equation with an integral of the following form:
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Here, the values of the functions with the subscript
1 constitute the corresponding values at the end of the
laminar portion of the boundary layer, the formula
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being recommended for calculating the value of f7 .
The values of Rf * can be determined from laminar
boundary layer theory [8].

After having calculated the form parameter f(x),
R¥* or 4**(x) can be determined from the equation
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Having determined R** (x) and R(x), the ratios of
the relative boundary layer thicknesses in the tran-
sition region are calculated from formula
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where H; =H(xz) and Hy =H(xp).



This formula was obtained under the assumption
that H varies linearly with Ry. The value of H; can be
determined analytically (see monograph [8]). For
boundary layer calculations involving a small pressure
drop at the external boundary, it is advisable to use
Ht = 1.3-1,4, A comparison of the results obtained
from the formula with Schubauer and Klebanoff's [14]
experimental data showed satisfactory agreement
within the limits of from 5 to 8%,
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Fig. 3. Comparison of the analytical and experimental
plots of thelocal friction coefficient vs., Reynolds num-
ber. 1) and 2), according to Zysina-Molozhen [6] for
x = 0.30and 0.41, respectively; 3)according to Dhawan-
Narasimha [15]; 4) the method proposed; 5) from the
Blasius formula [10]; 6) from Falkner's formula [11];
the points correspond to experimental values [14].

Further, we shall calculate the displacement thick-
ness
8% (x)y=H §**(x) (16)

and the local shear stress
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Within the limits of the assumption employed, formu-
la (17) may be recommended for appraisal computa-
tions,

A comparison of analytical and experimental data
for the local friction coefficient is given in Figure 3.
The experimental points in the figure are obtained
by processing the velocity profiles measured by Schu-
bauer and Klebanoff [14]. The figure also shows the
corresponding theoretical values calculated on the
basis of Zysina-Molozhen's data (curves 1 and 2),
Dhawan-Narasimha's [15] data (curve 3), and by the
method proposed (curve 4), as well as on the basis
of the formulas proposed by Blasius [10] (curve 5)
and by Falkner [11] (curve 6), It should be empha-
sized that curve 1 is obtained from calculations per-
formed on the basis of formula (9) in {6] (p. 454)
for x = 0.30, while curve 2 is obtained for x = 0.41,
The range of variation of x has been selected in cor-
respondence with the data taken from Zysina-Molo-
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zhen, The data presented demonstrate the satisfactory
agreement between values obtained by the method
proposed and experimental values,

NOTATION

Ty is the instantaneous radius of the axisymmetric
body; § is the boundary layer thickness; §** isthe mo-
mentum thickness; §*is the displacement thickness; xj
is the abscissa of the terminal point of the laminar re~
gion; x4 is the abscissa of the beginning of the turbu-
lent region; u is the projection of the boundary layer
velocity vector on the x axis; U is the velocity at the
external boundary of the boundary layer; f is the form
parameter of the boundary layer; ¢ is the dimension~
less local friction coefficient; H is the ratio of the
relative boundary layer thicknesses; v and g are the
kinematic and dynamic viscosity coefficients of the
fluid, respectively;p is the density of the fluid; 7, is
the shear stress at the surface of the body; GR**) is
the normalizing function; Ry = Ug/v; R¥* = Ud**+ /v
are the local Reynolds numbers; Ryg; = Uy /¥; Ry =
= Uxy/v are the local critical Reynolds numbers.
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