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An approximate method of allowing for the influence of the length of 
the transition region in the calculation of the characteristics of plane 
and axisymmetrtc boundary layers with a small pressure drop at the 
external boundary is proposed. A satisfactory agreement between the 
analytical results and experimental data is obtained. 

In the proximity of the surface of a body moving in 
a liquid or a gas at large Reynolds numbers, there 
forms a boundary layer where laminar-turbulent tran- 
sition occurs in a certain transition region. L. Prandtl 
[1] has schematized this region as a point and has 
proposed an approximate formula for determining the 
friction drag of a plate with allowance for the laminar 
and turbulent regions. A. R. Collar [2] has improved 
Prandtl's formula for a flat plate, within the limits of 
the concept ofa transition point, while K. K. Fedyaev- 
skii and V. T. Goroshehenko [3] have plotted 
curves for determining the profile drag of a wing. 
L. M. Zysina-Molozhen [4-6] was apparently the first 
to draw at tent ion to the impor tance  of taking into 
account  the length of the t r a n s i t i o n  r eg ion  in  the ca l -  
cu la t ion  of boundary  l a y e r  c h a r a c t e r i s t i c s  and to 
propose  an e m p i r i c a l  computat ion method.  

Let us examine  the longi tudinal  flow pas t  an axi-  
s y m m e t r i c  body or a plane wing prof i le .  The o r ig in  
of the coordina tes  wil l  be located at the forward  s tag-  
nat ion point,  the x axis will  be d i rec ted  along the con-  
tour,  and the y axis will be n o r m a l  to the contour .  
Applying the law for  the change in  m o m e n t u m  to an 
e l emen t  of a boundary  l aye r  with a longi tudinal  p r e s -  
su re  drop at the ex te rna l  boundary,  we obtain the 
in teg ra l  m o m e n t u m  re l a t i on  [4, 7] 

df dU 1 
F(D + 

dx dx U 

- - -  r0 ~. ( 1 )  

Here,  the following va lues  a re  in t roduced:  

F = (l ~- m)~ - - [3  - t - m +  (1 + m)H]f, 

dU 6"* 
f = - -  G(R**), 

dx U 

H== - -  
5 �9 

5"*" ~= % G(R**)i p U 2 

re(R**) 

_ -_  ( ] 
\ % /f=o' 

dlogG(R**) R**= - -  
i 

d log R** 
US** 

6 

0 

6 

0 

Rela t ion  (1), and all  the following computat ions ,  
a re  valid only for  s m a l l  values  of 6 / r  o. Without this  
l imi ta t ion ,  the p rob lem becomes  apprec iab ly  more  
complicated,  and a solut ion to it  cannot be obtained 
in  f inal  fo rm.  In cases  of p r ac t i ca l  impor tance ,  how- 
ever ,  the t r a n s i t i o n  reg ion  is  usua l ly  located at the 
nose por t ion  or at the m a x i m u m  c ross  sec t ion  of a 
body, where this l imi t a t ion  has only a sl ight  effect.  

It should be noted that (1) holds for  the l a m i n a r  
and tu rbu len t  reg ions  as well  as for  the t r a n s i t i o n  
reg ion  of an a x i s y m m e t r i c  boundary  l aye r .  The 
t e r m  2 (dr0/dx) ( l / r0)  takes into account  the inf luence 
of the t r a n s v e r s e  cu rva tu re  of the body on the boun-  
da ry  l a ye r  c h a r a c t e r i s t i c s .  Pos tu la t ing  r 0 - 1 in this  
r e l a t i o n  and in  all  the following computat ions ,  we 
shal l  f o rma l ly  obta in  fo rmulas  sui table  for  ca lcu la t -  
ing the c h a r a c t e r i s t i c s  of a plane boundary  l aye r .  

Let us examine  the t r a n s i t i o n  reg ion  in  a boundary  
layer ,  a s s u m i n g  that  the dependence of the local  f r i c -  
t ion  coeff icient  in  this r eg ion  on the Reynolds number  
in  the absence  of a longi tudinal  p r e s s u r e  drop at the 
ex te rna l  boundary  of the l a ye r  is governed by the 
power law 

I = AR . (27 
c%= t P U~ Jr=0 

The values  of the cons tants  A and B wil l  be de-  
t e r m i n e d  f rom the condit ion that the value of the coef-  
f ic ient  cft r at the beginning  of the t r a n s i t i o n  reg ion  is  

equal to i ts  value at the end of the l a m i n a r  region,  
while i ts  value at  the end of the t r a n s i t i o n  reg ion  is 
equal to that at  the beginning of the tu rbu len t  reg ion;  
i . e . ,  

cry= cf z for, R~ = Rx z , 

citr= c~t for R, = R ~ .  (3) 

The local  f r i c t ion  coeff ic ient  in  the l a m i n a r  and 
tu rbu len t  regions  of the boundary  l a ye r  will be ca lcu-  
lated on the bas i s  of the Blas ius  [10] and F a l k n e r  [11] ~ 
fo rmulas ,  r espec t ive ly :  

0.664 0~0263 
cf z = p1/2 ; c r t=  Dl/z (4) 
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Fig.  1. Coef f ic ien ts  A and B p lo t ted  vs.  
the  c r i t i c a l  Reynolds  number  at  the b e -  
ginning of the t r a n s i t i o n  r eg ion .  1) k = 

= 1.5; 2) k = 1.75; 3) k = 2.0. 
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Fig. 2. The coef f ic ien t  k = Rx t /Rx /  as  a funct ion of the  
c r i t i c a l  Reynolds  number  at the  beginning  of the  t r a n s i -  
t ion r eg ion :  1) a c c o r d i n g  to the da ta  of [12]; 2) a c c o r d i n g  

to  [13] ; 3) a cco rd ing  to [6] ; a c o r r e s p o n d s  to  [14]. 



JOURNAL OF ENGINEERING PHYSICS 7 

Then, after simple computations we obtain 

0,0263 
log 0.66-~- 5 l o g R x / . -  1 (5) 

= l o g ~  + t-~ l o g k  f ; 

A = 0.664 ~--(B+1/2) " ' ~  z ' (6) 

where k = Rxt/Rx/o 

Figure 1 shows the coefficients A and B as a func- 
tion of the crit ical Reynolds number at the beginning 
of the transition region Rx/ .  

It should be noted that, using a somewhat different 
approach, Zysina-Molozhen [6] has derived an ana- 
iogous coefficient r = xt/x/, which in the case of a 
plate is identical to the coefficient k = Rxt/R x l" A 
method of calculating Rx I with allowance for the initial 
turbulence of the flow and surface roughness of the 
body is outlined in [9]. 

Process ing of the experimental data obtained by 
Potter  and Whitfield [12], Schubauer and Skramstad 
[13], and Schubauer and Klebanoff [14] concerning 
the length of the transition region in the boundary 
layer on a plate made it possible to obtain a plot of 
the coefficient k vs. the crit ical Reynolds number Rx l '  
shown in Fig, 2. Curve (1) is plotted on the basis of 
the data obtained by Potter-Whiffield [12], who have 
generalized the experimental resul ts .  Curve (2) is a 
result  of the processing of Schubauer and Skramstad's  
[13] experimentM data. Curve (3) is obtained by con- 
version of a s imilar  graph published by Zysina-Mo!o- 
zhen in [6]. Point a in the graph corresponds to the 
experimental results  obtained by Schubauer and 
Klebanoff [14]. The value of the coefficient k com- 
puted from Dhawan and Naras imha 's  [15] formula 
appears to exceed the experimental data by 15-20%. 

The specific nature of the relation shown in Fig. 3 
should be emphasized, since in the general case, 
coefficient k is not a single-valued function of the 
local cri t ical  Reynolds number Rx/,  which depends 
not only on the degree of turbulence of the oncoming 
flow but also on the longitudinal pressure  drop at the 
external boundary of the layer.  Analysis of the experi- 
mental data [16, 17] for a boundary layer  with a small 
p ressure  drop at the external boundary shows, how- 
ever, that in this case the values of the coefficient k 
correlate  sas with those shown in Fig. 2 
for a plate. 

In order to determine the relationship between the 
local friction coefficient cft r and the Reynolds number 
R** in the transition region, we shall use the integral 
relation (1), which for the part icular  case of a plate 
is written in the form 

1 dR** 1 AR B _ I 
e f t - -  dRx 2 G(R**) (7) 

After separating the variables, we shall integrate the 
relation (7) for the boundary condition R** = 0 for  
R x = 0. As a result,  we get 

u = [ B + 1 ~ B/(B+I) R * * B / ( B + I }  . (8) 
Rx ~ A/2 ] 

Withallowance for the relations (7) and (8), we shall 
calculate the normalizing function 

2 ( B + 1 I--B~(B+I) R**_B/(B+I ~ (9) 
c~R**)=-y  \ A/2 ] 

After taking the logarithm of the normalizing function 
and subsequently differentiating it. we get 

dlogG(R**) B 
m - -  (i0) 

dlogR** B + 1 

Processing of experimental data for the transition 
region [14, 18] showed that for small pressure  drops 
at the external boundary of the layer-- for  which all 
the following results are valid--one may postulate 

~ 1 and H ~ 2 in relation (1). For a boundary layer 
with a large longitudinal pressure  gradient at the 
external boundary, the value of the parameter  H va- 
ries within the range from 2.0 to 3.6, as has been 
correct ly  pointed out by Zysina-Molozhen [4]. It is, 
therefore, advisable to use the mean value H = 3 in 
such cases. 

For  the case of a boundary layer with a small  
pressure  drop at the external boundary, the function 
F(f) becomes linear and reduces to the form 

F(D 1 (5 + 28) f, (11) 
B + I  B + I  

while relation (1) becomes a Bernoulli differential 
equation with an integral of the following form: 

dU 1 
f(x)= dx ~+2____~ • 

u B+, (x) r~(x) 

i 4+B 
(~)r2o(~)d ~ + 

1 uB+I 
x B + I  

x 1 

5+2B 

+ ~rzoU z B+~- I ) . (12) 
dU I Idx ] 

Here, the values of the functions with the subscript  
l constitute the corresponding values at the end of the 
laminar portion of the boundary layer, the formula 

�9 : v dUz 
[l = 4.54R/ 2 (13~ 

" U l dx 

being recommended for calculating the value o f f  l . 
The values of R~* can be determined from laminar 
boundary layer theory [8]. 

After having calculated the form parameter  f(x), 
R** or 6**(x) can be determined from the equation 

2 [ B + I ~  -B/{B+') = / v  dU ~ -  ~, ~ ] R **vlB+') I U 2 (14) 
j dx 

Having determined R** (x) and Rx(X), the ratios of 
the relative boundary layer thicknesses in the t ran-  
sition region are  calculated from formula 

//tr(x) = H z - -  (1 
Rx /-h 

where H l = H(x/) and H t = H(xt). 
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This formula was obtained under the assumption 
that H varies linearly with R x. The value of H l can be 
determined analytically (see monograph [8]). For  
boundary layer calculations involving a small pressure  
drop at the external boundary, it is advisable to use 
H t = 1.3-1.4.  A comparison of the results obtained 
from the formula with Schubauer and Klebanoff's [14] 
experimental data showed satisfactory agreement 
within the limits of f rom 5 to 8%~ 
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Fig. 3. Comparison of the analytical and experimental 
plots of the local friction coefficient vs. Reynolds num- 
ber. 1) and 2), according to Zysina-Molozhen [6] for 
x = 0.30 and 0.41, respectively;, 3) aceordingto Dhawan- 
Narasimha [15]; 4) the method proposed; 5) from the 
Blasius formula [10] ; 6) f rom Falkner ' s  formula [11] ; 

the points correspond to experimental values [14]. 

Further,  we shall calculate the displacement thick- 
TIes S 

6*(x) -~ H 6"* (x) (16) 

and the local shear s t ress  

n = A [ B + 1 ]B/(~+,) R**~/(~+ , (17) 
• o u S t ~ ]  
2 

Within the limits of the assumption employed, formu- 
la (17) may be recommended for  appraisal computa- 
tions. 

A comparison of analytical and experimental data 
for the local friction coefficient is given in Figure 3. 
The experimental points in the figure are obtained 
by processing the velocity profiles measured by Schu- 
bauer and Klebanoff [14]. The figure also shows the 
corresponding theoretical values calculated on the 
basis of Zysina-Molozhen's data (curves 1 and 2), 
Dhawan-Narasimha's [15] data (curve 3), and by the 
method proposed (curve 4), as well as on the basis 
of the formulas proposed by Blasius [10] (curve 5) 
and by Falkner [11] (curve 6). It should be empha- 
sized that curve 1 is obtained from calculations per-  
formed on the basis of formula (9) in [6] (p. 454) 
for x = 0.30, while curve 2 is obtained for x = 0.41. 
The range of variation of x has been selected in cor-  
respondence with the data taken f rom Zysina-Molo- 

zhen. The data presented demonstrate the satisfactory 
agreement between values obtained by the method 
proposed and experimental values. 

NOTATION 

r 0 is the instantaneous radius of the axisymmetric 
body; 6 is the boundarylayer  thickness; 5** is the mo-  
mentum thickness; 6" is the displacement thickness; x l 
is the abscissa of the terminal point of the laminar r e -  
gion; x t is the abscissa of the beginning of the turbu- 
lent region; u is the projection of the boundary layer 
velocity vector on the x axis ; U is the velocity at the 
external boundary of the boundary layer ; f  is the form 
parameter  of the boundary layer;  ~ is the dimension- 
less local friction coefficient; H is the ratio of the 
relative boundary layer thicknesses; v and # are the 
kinematic and dynamic viscosity coefficients of the 
fluid, respectively;  p is the density of the fluid; T O is 
the shear s t ress  at the surface of the body; G(R**) is 
the normalizing function; R x = Ux/v, R** -- U6**/v 
are the local Reynolds numbers;  R x / =  Ux/ /v ;  Rxt = 
= Uxt/v are the local cri t ical  Reynolds numbers. 
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